C2 Factor and Remainder Theorem

1. June 2010 qu.1

The cubic polynomial f(x) is defined by $f(x) = x^3 + ax^2 - ax - 14$, where *a* is a constant.

- (i) Given that (x 2) is a factor of f(x), find the value of *a*. [3]
- (ii) Using this value of a, find the remainder when f(x) is divided by (x + 1). [2]
- 2. Jan 2010 qu.6 The cubic polynomial f(x) is given by $f(x) = 2x^3 + ax^2 + bx + 15$,

where *a* and *b* are constants. It is given that (x + 3) is a factor of f(x) and that, when f(x) is divided by (x - 2), the remainder is 35.

- (i) Find the values of *a* and *b*. [6]
- (ii) Using these values of a and b, divide f(x) by (x + 3). [3]
- **3.** June 2009 qu.7

The polynomial f(x) is given by $f(x) = 2x^3 + 9x^2 + 11x - 8$.

- (i) Find the remainder when f(x) is divided by (x + 2). [2]
- (ii) Use the factor theorem to show that (2x 1) is a factor of f(x). [2]
- (iii) Express f(x) as a product of a linear factor and a quadratic factor. [3]
- (iv) State the number of real roots of the equation f(x) = 0, giving a reason for your answer. [2]
- 4. Jan 2009 qu.9
 - (i) The polynomial f(x) is defined by $f(x) = x^3 x^2 3x + 3$. Show that x = 1 is a root of the equation f(x) = 0, and hence find the other two roots. [6]
 - (ii) Hence solve the equation $\tan^3 x \tan^2 x 3 \tan x + 3 = 0$
 - for $0 \le x \le 2\pi$. Give each solution for x in an exact form. [6]
- 5. June 2008 qu.4

The cubic polynomial $ax^3 - 4x^2 - 7ax + 12$ is denoted by f (x).

- (i) Given that (x 3) is a factor of f(x), find the value of the constant *a*. [3]
- (ii) Using this value of *a*, find the remainder when f(x) is divided by (x + 2). [2]

6.	June 2007 qu.9 The polynomial $f(x)$ is given by $f(x) = x^3 + 6x^2 + x - 4$.				
(i) (a		(a)	Show that $(x + 1)$ is a factor of $f(x)$.		
		(b) Hence find the exact roots of the equation $f(x) = 0$.		[6]	
	(ii)	(a)	Show that the equation $2\log_2(x+3) + \log_2 x - \log_2 (4x+2) = 1$		
			can be written in the form $f(x) = 0$.	[5]	
		(b)	Explain why the equation $2\log_2(x+3) + \log_2 x - \log_2 (4x+2) = 1$		
			has only one real root and state the exact value of this root.	[2]	
7.	Jan 2007 qu.8 The polynomial $f(x)$ is defined by $f(x) = x^3 - 9x^2 + 7x + 33$.				
	(i)	Find	the remainder when $f(x)$ is divided by $(x + 2)$.	[2]	
	(ii)	Show	that $(x - 3)$ is a factor of $f(x)$.	[1]	
	(iii)	Solve	the equation $f(x) = 0$, giving each root in an exact form as simply as possible.	[6]	
8.	June 2006 qu.8 The cubic polynomial $2x^3 + ax^2 + bx - 10$ is denoted by $f(x)$. It is given that, when $f(x)$ is obv $(x - 2)$, the remainder is 12. It is also given that $(x + 1)$ is a factor of $f(x)$.				
	(i)	Find	the values of <i>a</i> and <i>b</i> .	[6]	
	(ii)	Divid	le $f(x)$ by $(x + 2)$ to find the quotient and the remainder.	[5]	
9.	Jan 2006 qu.8 The cubic polynomial $2x^3 + kx^2 - x + 6$ is denoted by $f(x)$. It is given that $(x + 1)$ is a fac				
	(i)	Show	that $k = -5$, and factorise $f(x)$ completely.	[6]	
	(ii)	Find	$\int_{-1}^2 f(x) \mathrm{d}x .$	[4]	
	(iii)	Expla region	in with the aid of a sketch why the answer to part (ii) does not give the area of the n between the curve $y = f(x)$ and the x-axis for $-1 \le x \le 2$.	[2]	
10.	June 2005 qu.5 The cubic polynomial $f(x)$ is given by $f(x) = x^3 + ax + b$,				
	where <i>a</i> and <i>b</i> are constants. It is given that $(x + 1)$ is a factor of $f(x)$ and that the remainder when f (x) is divided by $(x - 3)$ is 16.				
	(i)	Find	the values of <i>a</i> and <i>b</i> .	[5]	

(ii) Hence verify that f(2) = 0, and factorise f(x) completely. [3]